Class LogisticRegression
ML implements logistic regression, which is a probabilistic classification technique.
public class LogisticRegression : UnmanagedObject, IDisposable, IStatModel, IAlgorithm
- Inheritance
-
LogisticRegression
- Implements
- Inherited Members
- Extension Methods
Constructors
LogisticRegression()
Initializes a new instance of the LogisticRegression class.
public LogisticRegression()
Properties
AlgorithmPtr
Return the pointer to the algorithm object
public nint AlgorithmPtr { get; }
Property Value
Iterations
Number of iterations
public int Iterations { get; set; }
Property Value
LearningRate
Learning rate
public double LearningRate { get; set; }
Property Value
MiniBatchSize
Specifies the number of training samples taken in each step of Mini-Batch Gradient Descent
public int MiniBatchSize { get; set; }
Property Value
Regularization
Kind of regularization to be applied
public LogisticRegression.RegularizationMethod Regularization { get; set; }
Property Value
StatModelPtr
Return the pointer to the StatModel object
public nint StatModelPtr { get; }
Property Value
TermCriteria
Termination criteria of the algorithm
public MCvTermCriteria TermCriteria { get; set; }
Property Value
TrainMethod
Kind of training method to be applied
public LogisticRegression.TrainType TrainMethod { get; set; }
Property Value
Methods
DisposeObject()
Release the unmanaged resources
protected override void DisposeObject()